Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Performance Analysis for Practical Unmanned Aerial Vehicle Networks with LoS/NLoS Transmissions (1804.00811v1)

Published 3 Apr 2018 in cs.NI

Abstract: In this paper, we provide a performance analysis for practical unmanned aerial vehicle (UAV)-enabled networks. By considering both line-of-sight (LoS) and non-line-of-sight (NLoS) transmissions between aerial base stations (BSs) and ground users, the coverage probability and the area spectral efficiency (ASE) are derived. Considering that there is no consensus on the path loss model for studying UAVs in the literature, in this paper, three path loss models, i.e., high-altitude model, low-altitude model and ultra-low-altitude model, are investigated and compared. Moreover, the lower bound of the network performance is obtained assuming that UAVs are hovering randomly according to homogeneous Poisson point process (HPPP), while the upper bound is derived assuming that UAVs can instantaneously move to the positions directly overhead ground users. From our analytical and simulation results for a practical UAV height of 50 meters, we find that the network performance of the high-altitude model and the low-altitude model exhibit similar trends, while that of the ultra-low-altitude model deviates significantly from the above two models. In addition, the optimal density of UAVs to maximize the coverage probability performance has also been investigated.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube