Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Maximal Ferrers Diagram Codes: Constructions and Genericity Considerations (1804.00624v2)

Published 2 Apr 2018 in cs.IT, math.CO, and math.IT

Abstract: This paper investigates the construction of rank-metric codes with specified Ferrers diagram shapes. These codes play a role in the multilevel construction for subspace codes. A conjecture from 2009 provides an upper bound for the dimension of a rank-metric code with given specified Ferrers diagram shape and rank distance. While the conjecture in its generality is wide open, several cases have been established in the literature. This paper contributes further cases of Ferrers diagrams and ranks for which the conjecture holds true. In addition, the proportion of maximal Ferrers diagram codes within the space of all rank-metric codes with the same shape and dimension is investigated. Special attention is being paid to MRD codes. It is shown that for growing field size the limiting proportion depends highly on the Ferrers diagram. For instance, for $[m\times 2]$-MRD codes with rank~$2$ this limiting proportion is close to $1/e$.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.