Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Subspace-Orbit Randomized Decomposition for Low-rank Matrix Approximation (1804.00462v1)

Published 2 Apr 2018 in cs.NA and eess.SP

Abstract: An efficient, accurate and reliable approximation of a matrix by one of lower rank is a fundamental task in numerical linear algebra and signal processing applications. In this paper, we introduce a new matrix decomposition approach termed Subspace-Orbit Randomized singular value decomposition (SOR-SVD), which makes use of random sampling techniques to give an approximation to a low-rank matrix. Given a large and dense data matrix of size $m\times n$ with numerical rank $k$, where $k \ll \text{min} {m,n}$, the algorithm requires a few passes through data, and can be computed in $O(mnk)$ floating-point operations. Moreover, the SOR-SVD algorithm can utilize advanced computer architectures, and, as a result, it can be optimized for maximum efficiency. The SOR-SVD algorithm is simple, accurate, and provably correct, and outperforms previously reported techniques in terms of accuracy and efficiency. Our numerical experiments support these claims.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.