Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fixed-sized representation learning from Offline Handwritten Signatures of different sizes (1804.00448v2)

Published 2 Apr 2018 in cs.CV and stat.ML

Abstract: Methods for learning feature representations for Offline Handwritten Signature Verification have been successfully proposed in recent literature, using Deep Convolutional Neural Networks to learn representations from signature pixels. Such methods reported large performance improvements compared to handcrafted feature extractors. However, they also introduced an important constraint: the inputs to the neural networks must have a fixed size, while signatures vary significantly in size between different users. In this paper we propose addressing this issue by learning a fixed-sized representation from variable-sized signatures by modifying the network architecture, using Spatial Pyramid Pooling. We also investigate the impact of the resolution of the images used for training, and the impact of adapting (fine-tuning) the representations to new operating conditions (different acquisition protocols, such as writing instruments and scan resolution). On the GPDS dataset, we achieve results comparable with the state-of-the-art, while removing the constraint of having a maximum size for the signatures to be processed. We also show that using higher resolutions (300 or 600dpi) can improve performance when skilled forgeries from a subset of users are available for feature learning, but lower resolutions (around 100dpi) can be used if only genuine signatures are used. Lastly, we show that fine-tuning can improve performance when the operating conditions change.

Citations (62)

Summary

We haven't generated a summary for this paper yet.