Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

EarthMapper: A Tool Box for the Semantic Segmentation of Remote Sensing Imagery (1804.00292v1)

Published 1 Apr 2018 in stat.ML, cs.CV, and cs.LG

Abstract: Deep learning continues to push state-of-the-art performance for the semantic segmentation of color (i.e., RGB) imagery; however, the lack of annotated data for many remote sensing sensors (i.e. hyperspectral imagery (HSI)) prevents researchers from taking advantage of this recent success. Since generating sensor specific datasets is time intensive and cost prohibitive, remote sensing researchers have embraced deep unsupervised feature extraction. Although these methods have pushed state-of-the-art performance on current HSI benchmarks, many of these tools are not readily accessible to many researchers. In this letter, we introduce a software pipeline, which we call EarthMapper, for the semantic segmentation of non-RGB remote sensing imagery. It includes self-taught spatial-spectral feature extraction, various standard and deep learning classifiers, and undirected graphical models for post-processing. We evaluated EarthMapper on the Indian Pines and Pavia University datasets and have released this code for public use.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.