Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

I-vector Transformation Using Conditional Generative Adversarial Networks for Short Utterance Speaker Verification (1804.00290v1)

Published 1 Apr 2018 in eess.AS, cs.LG, and cs.SD

Abstract: I-vector based text-independent speaker verification (SV) systems often have poor performance with short utterances, as the biased phonetic distribution in a short utterance makes the extracted i-vector unreliable. This paper proposes an i-vector compensation method using a generative adversarial network (GAN), where its generator network is trained to generate a compensated i-vector from a short-utterance i-vector and its discriminator network is trained to determine whether an i-vector is generated by the generator or the one extracted from a long utterance. Additionally, we assign two other learning tasks to the GAN to stabilize its training and to make the generated ivector more speaker-specific. Speaker verification experiments on the NIST SRE 2008 "10sec-10sec" condition show that our method reduced the equal error rate by 11.3% from the conventional i-vector and PLDA system.

Citations (18)

Summary

We haven't generated a summary for this paper yet.