Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Generative Adversarial Networks (GANs): What it can generate and What it cannot? (1804.00140v2)

Published 31 Mar 2018 in cs.LG and stat.ML

Abstract: In recent years, Generative Adversarial Networks (GANs) have received significant attention from the research community. With a straightforward implementation and outstanding results, GANs have been used for numerous applications. Despite the success, GANs lack a proper theoretical explanation. These models suffer from issues like mode collapse, non-convergence, and instability during training. To address these issues, researchers have proposed theoretically rigorous frameworks inspired by varied fields of Game theory, Statistical theory, Dynamical systems, etc. In this paper, we propose to give an appropriate structure to study these contributions systematically. We essentially categorize the papers based on the issues they raise and the kind of novelty they introduce to address them. Besides, we provide insight into how each of the discussed articles solves the concerned problems. We compare and contrast different results and put forth a summary of theoretical contributions about GANs with focus on image/visual applications. We expect this summary paper to give a bird's eye view to a person wishing to understand the theoretical progress in GANs so far.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)