Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Regularizing RNNs for Caption Generation by Reconstructing The Past with The Present (1803.11439v2)

Published 30 Mar 2018 in cs.CV and cs.AI

Abstract: Recently, caption generation with an encoder-decoder framework has been extensively studied and applied in different domains, such as image captioning, code captioning, and so on. In this paper, we propose a novel architecture, namely Auto-Reconstructor Network (ARNet), which, coupling with the conventional encoder-decoder framework, works in an end-to-end fashion to generate captions. ARNet aims at reconstructing the previous hidden state with the present one, besides behaving as the input-dependent transition operator. Therefore, ARNet encourages the current hidden state to embed more information from the previous one, which can help regularize the transition dynamics of recurrent neural networks (RNNs). Extensive experimental results show that our proposed ARNet boosts the performance over the existing encoder-decoder models on both image captioning and source code captioning tasks. Additionally, ARNet remarkably reduces the discrepancy between training and inference processes for caption generation. Furthermore, the performance on permuted sequential MNIST demonstrates that ARNet can effectively regularize RNN, especially on modeling long-term dependencies. Our code is available at: https://github.com/chenxinpeng/ARNet

Citations (91)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.