Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Scaling Ordered Stream Processing on Shared-Memory Multicores (1803.11328v1)

Published 30 Mar 2018 in cs.DB

Abstract: Many modern applications require real-time processing of large volumes of high-speed data. Such data processing needs can be modeled as a streaming computation. A streaming computation is specified as a dataflow graph that exposes multiple opportunities for parallelizing its execution, in the form of data, pipeline and task parallelism. On the other hand, many important applications require that processing of the stream be ordered, where inputs are processed in the same order as they arrive. There is a fundamental conflict between ordered processing and parallelizing the streaming computation. This paper focuses on the problem of effectively parallelizing ordered streaming computations on a shared-memory multicore machine. We first address the key challenges in exploiting data parallelism in the ordered setting. We present a low-latency, non-blocking concurrent data structure to order outputs produced by concurrent workers on an operator. We also propose a new approach to parallelizing partitioned stateful operators that can handle load imbalance across partitions effectively and mostly avoid delays due to ordering. We illustrate the trade-offs and effectiveness of our concurrent data-structures on micro-benchmarks and streaming queries from the TPCx-BB benchmark. We then present an adaptive runtime that dynamically maps the exposed parallelism in the computation to that of the machine. We propose several intuitive scheduling heuristics and compare them empirically on the TPCx-BB queries. We find that for streaming computations, heuristics that exploit as much pipeline parallelism as possible perform better than those that seek to exploit data parallelism.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.