Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Subspace Clustering with Compressed Data (1803.11305v6)

Published 30 Mar 2018 in cs.CV

Abstract: Dimension reduction is widely regarded as an effective way for decreasing the computation, storage and communication loads of data-driven intelligent systems, leading to a growing demand for statistical methods that allow analysis (e.g., clustering) of compressed data. We therefore study in this paper a novel problem called compressive robust subspace clustering, which is to perform robust subspace clustering with the compressed data, and which is generated by projecting the original high-dimensional data onto a lower-dimensional subspace chosen at random. Given only the compressed data and sensing matrix, the proposed method, row space pursuit (RSP), recovers the authentic row space that gives correct clustering results under certain conditions. Extensive experiments show that RSP is distinctly better than the competing methods, in terms of both clustering accuracy and computational efficiency.

Citations (48)

Summary

We haven't generated a summary for this paper yet.