Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Fine Structure of Preferential Attachment Graphs I: Somewhere-Denseness (1803.11114v1)

Published 29 Mar 2018 in cs.DM

Abstract: Preferential attachment graphs are random graphs designed to mimic properties of typical real world networks. They are constructed by a random process that iteratively adds vertices and attaches them preferentially to vertices that already have high degree. We use improved concentration bounds for vertex degrees to show that preferential attachment graphs contain asymptotically almost surely (a.a.s.) a one-subdivided clique of size at least $(\log n){1/4}$. Therefore, preferential attachment graphs are a.a.s somewhere-dense. This implies that algorithmic techniques developed for sparse graphs are not directly applicable to them. The concentration bounds state: Assuming that the exact degree $d$ of a fixed vertex (or set of vertices) at some early time $t$ of the random process is known, the probability distribution of $d$ is sharply concentrated as the random process evolves if and only if $d$ is large at time $t$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.