Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Joint PLDA for Simultaneous Modeling of Two Factors (1803.10554v1)

Published 28 Mar 2018 in cs.LG and stat.ML

Abstract: Probabilistic linear discriminant analysis (PLDA) is a method used for biometric problems like speaker or face recognition that models the variability of the samples using two latent variables, one that depends on the class of the sample and another one that is assumed independent across samples and models the within-class variability. In this work, we propose a generalization of PLDA that enables joint modeling of two sample-dependent factors: the class of interest and a nuisance condition. The approach does not change the basic form of PLDA but rather modifies the training procedure to consider the dependency across samples of the latent variable that models within-class variability. While the identity of the nuisance condition is needed during training, it is not needed during testing since we propose a scoring procedure that marginalizes over the corresponding latent variable. We show results on a multilingual speaker-verification task, where the language spoken is considered a nuisance condition. We show that the proposed joint PLDA approach leads to significant performance gains in this task for two different datasets, in particular when the training data contains mostly or only monolingual speakers.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.