Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Canonical Correlation Analysis of Datasets with a Common Source Graph (1803.10309v1)

Published 27 Mar 2018 in cs.LG, cs.SY, and stat.ML

Abstract: Canonical correlation analysis (CCA) is a powerful technique for discovering whether or not hidden sources are commonly present in two (or more) datasets. Its well-appreciated merits include dimensionality reduction, clustering, classification, feature selection, and data fusion. The standard CCA however, does not exploit the geometry of the common sources, which may be available from the given data or can be deduced from (cross-) correlations. In this paper, this extra information provided by the common sources generating the data is encoded in a graph, and is invoked as a graph regularizer. This leads to a novel graph-regularized CCA approach, that is termed graph (g) CCA. The novel gCCA accounts for the graph-induced knowledge of common sources, while minimizing the distance between the wanted canonical variables. Tailored for diverse practical settings where the number of data is smaller than the data vector dimensions, the dual formulation of gCCA is also developed. One such setting includes kernels that are incorporated to account for nonlinear data dependencies. The resultant graph-kernel (gk) CCA is also obtained in closed form. Finally, corroborating image classification tests over several real datasets are presented to showcase the merits of the novel linear, dual, and kernel approaches relative to competing alternatives.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jia Chen (85 papers)
  2. Gang Wang (407 papers)
  3. Yanning Shen (44 papers)
  4. Georgios B. Giannakis (182 papers)
Citations (28)

Summary

We haven't generated a summary for this paper yet.