Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Iteration complexity of first-order augmented Lagrangian methods for convex conic programming (1803.09941v5)

Published 27 Mar 2018 in math.OC, cs.CC, cs.NA, and math.NA

Abstract: In this paper we consider a class of convex conic programming. In particular, we first propose an inexact augmented Lagrangian (I-AL) method that resembles the classical I-AL method for solving this problem, in which the augmented Lagrangian subproblems are solved approximately by a variant of Nesterov's optimal first-order method. We show that the total number of first-order iterations of the proposed I-AL method for finding an $\epsilon$-KKT solution is at most $\mathcal{O}(\epsilon{-7/4})$. We then propose an adaptively regularized I-AL method and show that it achieves a first-order iteration complexity $\mathcal{O}(\epsilon{-1}\log\epsilon{-1})$, which significantly improves existing complexity bounds achieved by first-order I-AL methods for finding an $\epsilon$-KKT solution. Our complexity analysis of the I-AL methods is based on a sharp analysis of inexact proximal point algorithm (PPA) and the connection between the I-AL methods and inexact PPA. It is vastly different from existing complexity analyses of the first-order I-AL methods in the literature, which typically regard the I-AL methods as an inexact dual gradient method.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.