Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MLE-induced Likelihood for Markov Random Fields (1803.09887v1)

Published 27 Mar 2018 in cs.LG, cs.AI, and stat.ML

Abstract: Due to the intractable partition function, the exact likelihood function for a Markov random field (MRF), in many situations, can only be approximated. Major approximation approaches include pseudolikelihood and Laplace approximation. In this paper, we propose a novel way of approximating the likelihood function through first approximating the marginal likelihood functions of individual parameters and then reconstructing the joint likelihood function from these marginal likelihood functions. For approximating the marginal likelihood functions, we derive a particular likelihood function from a modified scenario of coin tossing which is useful for capturing how one parameter interacts with the remaining parameters in the likelihood function. For reconstructing the joint likelihood function, we use an appropriate copula to link up these marginal likelihood functions. Numerical investigation suggests the superior performance of our approach. Especially as the size of the MRF increases, both the numerical performance and the computational cost of our approach remain consistently satisfactory, whereas Laplace approximation deteriorates and pseudolikelihood becomes computationally unbearable.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube