Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Local Minima of the Empirical Risk (1803.09357v2)

Published 25 Mar 2018 in cs.LG, math.OC, and stat.ML

Abstract: Population risk is always of primary interest in machine learning; however, learning algorithms only have access to the empirical risk. Even for applications with nonconvex nonsmooth losses (such as modern deep networks), the population risk is generally significantly more well-behaved from an optimization point of view than the empirical risk. In particular, sampling can create many spurious local minima. We consider a general framework which aims to optimize a smooth nonconvex function $F$ (population risk) given only access to an approximation $f$ (empirical risk) that is pointwise close to $F$ (i.e., $|F-f|_{\infty} \le \nu$). Our objective is to find the $\epsilon$-approximate local minima of the underlying function $F$ while avoiding the shallow local minima---arising because of the tolerance $\nu$---which exist only in $f$. We propose a simple algorithm based on stochastic gradient descent (SGD) on a smoothed version of $f$ that is guaranteed to achieve our goal as long as $\nu \le O(\epsilon{1.5}/d)$. We also provide an almost matching lower bound showing that our algorithm achieves optimal error tolerance $\nu$ among all algorithms making a polynomial number of queries of $f$. As a concrete example, we show that our results can be directly used to give sample complexities for learning a ReLU unit.

Citations (54)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.