Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unsupervised Domain Adaptation: from Simulation Engine to the RealWorld (1803.09180v1)

Published 24 Mar 2018 in cs.CV, cs.LG, and stat.ML

Abstract: Large-scale labeled training datasets have enabled deep neural networks to excel on a wide range of benchmark vision tasks. However, in many applications it is prohibitively expensive or time-consuming to obtain large quantities of labeled data. To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled target domain. Unfortunately, direct transfer across domains often performs poorly due to domain shift and dataset bias. Domain adaptation is the machine learning paradigm that aims to learn a model from a source domain that can perform well on a different (but related) target domain. In this paper, we summarize and compare the latest unsupervised domain adaptation methods in computer vision applications. We classify the non-deep approaches into sample re-weighting and intermediate subspace transformation categories, while the deep strategy includes discrepancy-based methods, adversarial generative models, adversarial discriminative models and reconstruction-based methods. We also discuss some potential directions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.