Papers
Topics
Authors
Recent
2000 character limit reached

Evaluating Sentence-Level Relevance Feedback for High-Recall Information Retrieval

Published 23 Mar 2018 in cs.IR | (1803.08988v2)

Abstract: This study uses a novel simulation framework to evaluate whether the time and effort necessary to achieve high recall using active learning is reduced by presenting the reviewer with isolated sentences, as opposed to full documents, for relevance feedback. Under the weak assumption that more time and effort is required to review an entire document than a single sentence, simulation results indicate that the use of isolated sentences for relevance feedback can yield comparable accuracy and higher efficiency, relative to the state-of-the-art Baseline Model Implementation (BMI) of the AutoTAR Continuous Active Learning ("CAL") method employed in the TREC 2015 and 2016 Total Recall Track.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.