Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Search of QC-LDPC Codes with Girths 6 and 8 and Free of Elementary Trapping Sets with Small Size (1803.08141v1)

Published 21 Mar 2018 in cs.IT and math.IT

Abstract: One of the phenomena that influences significantly the performance of low-density parity-check codes is known as trapping sets. An $(a,b)$ elementary trapping set, or simply an ETS where $a$ is the size and $b$ is the number of degree-one check nodes and $\frac{b}{a}<1$, causes high decoding failure rate and exert a strong influence on the error floor. In this paper, we provide sufficient conditions for exponent matrices to have fully connected $(3,n)$-regular QC-LDPC codes with girths 6 and 8 whose Tanner graphs are free of small ETSs. Applying sufficient conditions on the exponent matrix to remove some 8-cycles results in removing all 4-cycles, 6-cycles as well as some small elementary trapping sets. For each girth we obtain a lower bound on the lifting degree and present exponent matrices with column weight three whose corresponding Tanner graph is free of certain ETSs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.