Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Non-localization of Eigenvectors of High Girth Graphs (1803.08038v2)

Published 21 Mar 2018 in math.CO, cs.DM, math-ph, math.MP, math.PR, and math.SP

Abstract: We prove improved bounds on how localized an eigenvector of a high girth regular graph can be, and present examples showing that these bounds are close to sharp. This study was initiated by Brooks and Lindenstrauss (2009) who relied on the observation that certain suitably normalized averaging operators on high girth graphs are hyper-contractive and can be used to approximate projectors onto the eigenspaces of such graphs. Informally, their delocalization result in the contrapositive states that for any $\varepsilon \in (0,1)$ and positive integer $k,$ if a $(d+1)-$regular graph has an eigenvector which supports $\varepsilon$ fraction of the $\ell_22$ mass on a subset of $k$ vertices, then the graph must have a cycle of size $\tilde{O}(\log_{d}(k)/\varepsilon2)$, suppressing logarithmic terms in $1/\varepsilon$. In this paper, we improve the upper bound to $\tilde{O}(\log_{d}(k)/\varepsilon)$ and present a construction showing a lower bound of $\Omega(\log_d(k)/\varepsilon)$. Our construction is probabilistic and involves gluing together a pair of trees while maintaining high girth as well as control on the eigenvectors and could be of independent interest.

Citations (10)

Summary

We haven't generated a summary for this paper yet.