Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On Non-localization of Eigenvectors of High Girth Graphs (1803.08038v2)

Published 21 Mar 2018 in math.CO, cs.DM, math-ph, math.MP, math.PR, and math.SP

Abstract: We prove improved bounds on how localized an eigenvector of a high girth regular graph can be, and present examples showing that these bounds are close to sharp. This study was initiated by Brooks and Lindenstrauss (2009) who relied on the observation that certain suitably normalized averaging operators on high girth graphs are hyper-contractive and can be used to approximate projectors onto the eigenspaces of such graphs. Informally, their delocalization result in the contrapositive states that for any $\varepsilon \in (0,1)$ and positive integer $k,$ if a $(d+1)-$regular graph has an eigenvector which supports $\varepsilon$ fraction of the $\ell_22$ mass on a subset of $k$ vertices, then the graph must have a cycle of size $\tilde{O}(\log_{d}(k)/\varepsilon2)$, suppressing logarithmic terms in $1/\varepsilon$. In this paper, we improve the upper bound to $\tilde{O}(\log_{d}(k)/\varepsilon)$ and present a construction showing a lower bound of $\Omega(\log_d(k)/\varepsilon)$. Our construction is probabilistic and involves gluing together a pair of trees while maintaining high girth as well as control on the eigenvectors and could be of independent interest.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.