Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Non-localization of Eigenvectors of High Girth Graphs (1803.08038v2)

Published 21 Mar 2018 in math.CO, cs.DM, math-ph, math.MP, math.PR, and math.SP

Abstract: We prove improved bounds on how localized an eigenvector of a high girth regular graph can be, and present examples showing that these bounds are close to sharp. This study was initiated by Brooks and Lindenstrauss (2009) who relied on the observation that certain suitably normalized averaging operators on high girth graphs are hyper-contractive and can be used to approximate projectors onto the eigenspaces of such graphs. Informally, their delocalization result in the contrapositive states that for any $\varepsilon \in (0,1)$ and positive integer $k,$ if a $(d+1)-$regular graph has an eigenvector which supports $\varepsilon$ fraction of the $\ell_22$ mass on a subset of $k$ vertices, then the graph must have a cycle of size $\tilde{O}(\log_{d}(k)/\varepsilon2)$, suppressing logarithmic terms in $1/\varepsilon$. In this paper, we improve the upper bound to $\tilde{O}(\log_{d}(k)/\varepsilon)$ and present a construction showing a lower bound of $\Omega(\log_d(k)/\varepsilon)$. Our construction is probabilistic and involves gluing together a pair of trees while maintaining high girth as well as control on the eigenvectors and could be of independent interest.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube