Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expeditious Generation of Knowledge Graph Embeddings (1803.07828v2)

Published 21 Mar 2018 in cs.CL and cs.AI

Abstract: Knowledge Graph Embedding methods aim at representing entities and relations in a knowledge base as points or vectors in a continuous vector space. Several approaches using embeddings have shown promising results on tasks such as link prediction, entity recommendation, question answering, and triplet classification. However, only a few methods can compute low-dimensional embeddings of very large knowledge bases without needing state-of-the-art computational resources. In this paper, we propose KG2Vec, a simple and fast approach to Knowledge Graph Embedding based on the skip-gram model. Instead of using a predefined scoring function, we learn it relying on Long Short-Term Memories. We show that our embeddings achieve results comparable with the most scalable approaches on knowledge graph completion as well as on a new metric. Yet, KG2Vec can embed large graphs in lesser time by processing more than 250 million triples in less than 7 hours on common hardware.

Citations (3)

Summary

We haven't generated a summary for this paper yet.