Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Complexity of Testing Attainment of the Optimal Value in Nonlinear Optimization (1803.07683v2)

Published 20 Mar 2018 in math.OC, cs.CC, math.AG, and math.NA

Abstract: We prove that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can test whether the optimal value of a nonlinear optimization problem where the objective and constraints are given by low-degree polynomials is attained. If the degrees of these polynomials are fixed, our results along with previously-known "Frank-Wolfe type" theorems imply that exactly one of two cases can occur: either the optimal value is attained on every instance, or it is strongly NP-hard to distinguish attainment from non-attainment. We also show that testing for some well-known sufficient conditions for attainment of the optimal value, such as coercivity of the objective function and closedness and boundedness of the feasible set, is strongly NP-hard. As a byproduct, our proofs imply that testing the Archimedean property of a quadratic module is strongly NP-hard, a property that is of independent interest to the convergence of the Lasserre hierarchy. Finally, we give semidefinite programming (SDP)-based sufficient conditions for attainment of the optimal value, in particular a new characterization of coercive polynomials that lends itself to an SDP hierarchy.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.