Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Domain Adaptation with Randomized Expectation Maximization (1803.07634v1)

Published 20 Mar 2018 in stat.ML and cs.LG

Abstract: Domain adaptation (DA) is the task of classifying an unlabeled dataset (target) using a labeled dataset (source) from a related domain. The majority of successful DA methods try to directly match the distributions of the source and target data by transforming the feature space. Despite their success, state of the art methods based on this approach are either involved or unable to directly scale to data with many features. This article shows that domain adaptation can be successfully performed by using a very simple randomized expectation maximization (EM) method. We consider two instances of the method, which involve logistic regression and support vector machine, respectively. The underlying assumption of the proposed method is the existence of a good single linear classifier for both source and target domain. The potential limitations of this assumption are alleviated by the flexibility of the method, which can directly incorporate deep features extracted from a pre-trained deep neural network. The resulting algorithm is strikingly easy to implement and apply. We test its performance on 36 real-life adaptation tasks over text and image data with diverse characteristics. The method achieves state-of-the-art results, competitive with those of involved end-to-end deep transfer-learning methods.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.