Papers
Topics
Authors
Recent
2000 character limit reached

Online Learning: Sufficient Statistics and the Burkholder Method (1803.07617v1)

Published 20 Mar 2018 in cs.LG, math.OC, and stat.ML

Abstract: We uncover a fairly general principle in online learning: If regret can be (approximately) expressed as a function of certain "sufficient statistics" for the data sequence, then there exists a special Burkholder function that 1) can be used algorithmically to achieve the regret bound and 2) only depends on these sufficient statistics, not the entire data sequence, so that the online strategy is only required to keep the sufficient statistics in memory. This characterization is achieved by bringing the full power of the Burkholder Method --- originally developed for certifying probabilistic martingale inequalities --- to bear on the online learning setting. To demonstrate the scope and effectiveness of the Burkholder method, we develop a novel online strategy for matrix prediction that attains a regret bound corresponding to the variance term in matrix concentration inequalities. We also present a linear-time/space prediction strategy for parameter free supervised learning with linear classes and general smooth norms.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.