Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Low-Complexity Distributed Radio Access Network Slicing: Algorithms and Experimental Results (1803.07586v1)

Published 20 Mar 2018 in cs.NI

Abstract: Radio access network (RAN) slicing is an effective methodology to dynamically allocate networking resources in 5G networks. One of the main challenges of RAN slicing is that it is provably an NP-Hard problem. For this reason, we design near-optimal low-complexity distributed RAN slicing algorithms. First, we model the slicing problem as a congestion game, and demonstrate that such game admits a unique Nash equilibrium (NE). Then, we evaluate the Price of Anarchy (PoA) of the NE, i.e., the efficiency of the NE as compared to the social optimum, and demonstrate that the PoA is upper-bounded by 3/2. Next, we propose two fully-distributed algorithms that provably converge to the unique NE without revealing privacy-sensitive parameters from the slice tenants. Moreover, we introduce an adaptive pricing mechanism of the wireless resources to improve the network owner's profit. We evaluate the performance of our algorithms through simulations and an experimental testbed deployed on the Amazon EC2 cloud, both based on a real-world dataset of base stations from the OpenCellID project. Results conclude that our algorithms converge to the NE rapidly and achieve near-optimal performance, while our pricing mechanism effectively improves the profit of the network owner.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube