Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Leave-one-out Approach for Matrix Completion: Primal and Dual Analysis (1803.07554v3)

Published 20 Mar 2018 in stat.ML, cs.IT, cs.LG, math.IT, math.OC, math.ST, and stat.TH

Abstract: In this paper, we introduce a powerful technique based on Leave-one-out analysis to the study of low-rank matrix completion problems. Using this technique, we develop a general approach for obtaining fine-grained, entrywise bounds for iterative stochastic procedures in the presence of probabilistic dependency. We demonstrate the power of this approach in analyzing two of the most important algorithms for matrix completion: (i) the non-convex approach based on Projected Gradient Descent (PGD) for a rank-constrained formulation, also known as the Singular Value Projection algorithm, and (ii) the convex relaxation approach based on nuclear norm minimization (NNM). Using this approach, we establish the first convergence guarantee for the original form of PGD without regularization or sample splitting}, and in particular shows that it converges linearly in the infinity norm. For NNM, we use this approach to study a fictitious iterative procedure that arises in the dual analysis. Our results show that \NNM recovers an $ d $-by-$ d $ rank-$ r $ matrix with $\mathcal{O}(\mu r \log(\mu r) d \log d )$ observed entries. This bound has optimal dependence on the matrix dimension and is independent of the condition number. To the best of our knowledge, this is the first sample complexity result for a tractable matrix completion algorithm that satisfies these two properties simultaneously.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.