Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Leave-one-out Approach for Matrix Completion: Primal and Dual Analysis (1803.07554v3)

Published 20 Mar 2018 in stat.ML, cs.IT, cs.LG, math.IT, math.OC, math.ST, and stat.TH

Abstract: In this paper, we introduce a powerful technique based on Leave-one-out analysis to the study of low-rank matrix completion problems. Using this technique, we develop a general approach for obtaining fine-grained, entrywise bounds for iterative stochastic procedures in the presence of probabilistic dependency. We demonstrate the power of this approach in analyzing two of the most important algorithms for matrix completion: (i) the non-convex approach based on Projected Gradient Descent (PGD) for a rank-constrained formulation, also known as the Singular Value Projection algorithm, and (ii) the convex relaxation approach based on nuclear norm minimization (NNM). Using this approach, we establish the first convergence guarantee for the original form of PGD without regularization or sample splitting}, and in particular shows that it converges linearly in the infinity norm. For NNM, we use this approach to study a fictitious iterative procedure that arises in the dual analysis. Our results show that \NNM recovers an $ d $-by-$ d $ rank-$ r $ matrix with $\mathcal{O}(\mu r \log(\mu r) d \log d )$ observed entries. This bound has optimal dependence on the matrix dimension and is independent of the condition number. To the best of our knowledge, this is the first sample complexity result for a tractable matrix completion algorithm that satisfies these two properties simultaneously.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)