Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

AC/DC: In-Database Learning Thunderstruck (1803.07480v2)

Published 20 Mar 2018 in cs.DB

Abstract: We report on the design and implementation of the AC/DC gradient descent solver for a class of optimization problems over normalized databases. AC/DC decomposes an optimization problem into a set of aggregates over the join of the database relations. It then uses the answers to these aggregates to iteratively improve the solution to the problem until it converges. The challenges faced by AC/DC are the large database size, the mixture of continuous and categorical features, and the large number of aggregates to compute. AC/DC addresses these challenges by employing a sparse data representation, factorized computation, problem reparameterization under functional dependencies, and a data structure that supports shared computation of aggregates. To train polynomial regression models and factorization machines of up to 154K features over the natural join of all relations from a real-world dataset of up to 86M tuples, AC/DC needs up to 30 minutes on one core of a commodity machine. This is up to three orders of magnitude faster than its competitors R, MadLib, libFM, and TensorFlow whenever they finish and thus do not exceed memory limitation, 24-hour timeout, or internal design limitations.

Citations (59)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.