Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

State and Parameter Estimation for Natural Gas Pipeline Networks using Transient State Data (1803.07156v2)

Published 19 Mar 2018 in cs.SY

Abstract: We formulate two estimation problems for pipeline systems in which measurements of compressible gas flow through a network of pipes is affected by time-varying injections, withdrawals, and compression. We consider a state estimation problem that is then extended to a joint state and parameter estimation problem that can be used for data assimilation. In both formulations, the flow dynamics are described on each pipe by space- and time-dependent density and mass flux that evolve according to a system of coupled partial differential equations, in which momentum dissipation is modelled using the Darcy-Wiesbach friction approximation. These dynamics are first spatially discretized to obtain a system of nonlinear ordinary differential equations on which state and parameter estimation formulations are given as nonlinear least squares problems. A rapid, scalable computational method for performing a nonlinear least squares estimation is developed. Extensive simulations and computational experiments on multiple pipeline test networks demonstrate the effectiveness of the formulations in obtaining state and parameter estimates in the presence of measurement and process noise.

Citations (58)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.