Papers
Topics
Authors
Recent
2000 character limit reached

Learning non-Gaussian Time Series using the Box-Cox Gaussian Process (1803.07102v1)

Published 19 Mar 2018 in stat.ML and cs.LG

Abstract: Gaussian processes (GPs) are Bayesian nonparametric generative models that provide interpretability of hyperparameters, admit closed-form expressions for training and inference, and are able to accurately represent uncertainty. To model general non-Gaussian data with complex correlation structure, GPs can be paired with an expressive covariance kernel and then fed into a nonlinear transformation (or warping). However, overparametrising the kernel and the warping is known to, respectively, hinder gradient-based training and make the predictions computationally expensive. We remedy this issue by (i) training the model using derivative-free global-optimisation techniques so as to find meaningful maxima of the model likelihood, and (ii) proposing a warping function based on the celebrated Box-Cox transformation that requires minimal numerical approximations---unlike existing warped GP models. We validate the proposed approach by first showing that predictions can be computed analytically, and then on a learning, reconstruction and forecasting experiment using real-world datasets.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.