Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Two new classes of quantum MDS codes (1803.06602v2)

Published 18 Mar 2018 in cs.IT and math.IT

Abstract: Let $p$ be a prime and let $q$ be a power of $p$. In this paper, by using generalized Reed-Solomon (GRS for short) codes and extended GRS codes, we construct two new classes of quantum maximum-distance- separable (MDS) codes with parameters [ [[tq, tq-2d+2, d]]{q} ] for any $1 \leq t \leq q, 2 \leq d \leq \lfloor \frac{tq+q-1}{q+1}\rfloor+1$, and [ [[t(q+1)+2, t(q+1)-2d+4, d]]{q} ] for any $1 \leq t \leq q-1, 2 \leq d \leq t+2$ with $(p,t,d) \neq (2, q-1, q)$. Our quantum codes have flexible parameters, and have minimum distances larger than $\frac{q}{2}+1$ when $t > \frac{q}{2}$. Furthermore, it turns out that our constructions generalize and improve some previous results.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.