Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Variational Bayesian Line Spectral Estimation with Multiple Measurement Vectors (1803.06497v2)

Published 17 Mar 2018 in cs.IT and math.IT

Abstract: In this paper, the line spectral estimation (LSE) problem with multiple measurement vectors (MMVs) is studied utilizing the Bayesian methods. Motivated by the recently proposed variational line spectral estimation (VALSE) method, we develop the multisnapshot VALSE (MVALSE) for multi snapshot scenarios, which is especially important in array signal processing. The MVALSE shares the advantages of the VALSE method, such as automatically estimating the model order, noise variance, weight variance, and providing the uncertain degrees of the frequency estimates. It is shown that the MVALSE can be viewed as applying the VALSE with single measurement vector (SMV) to each snapshot, and combining the intermediate data appropriately. Furthermore, the Seq-MVALSE is developed to perform sequential estimation. Finally, numerical results are conducted to demonstrate the effectiveness of the MVALSE method, compared to the state-of-the-art methods in the MMVs setting.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.