Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lipschitz Constrained GANs via Boundedness and Continuity (1803.06107v3)

Published 16 Mar 2018 in cs.CV

Abstract: One of the challenges in the study of Generative Adversarial Networks (GANs) is the difficulty of its performance control. Lipschitz constraint is essential in guaranteeing training stability for GANs. Although heuristic methods such as weight clipping, gradient penalty and spectral normalization have been proposed to enforce Lipschitz constraint, it is still difficult to achieve a solution that is both practically effective and theoretically provably satisfying a Lipschitz constraint. In this paper, we introduce the boundedness and continuity ($BC$) conditions to enforce the Lipschitz constraint on the discriminator functions of GANs. We prove theoretically that GANs with discriminators meeting the BC conditions satisfy the Lipschitz constraint. We present a practically very effective implementation of a GAN based on a convolutional neural network (CNN) by forcing the CNN to satisfy the $BC$ conditions (BC-GAN). We show that as compared to recent techniques including gradient penalty and spectral normalization, BC-GANs not only have better performances but also lower computational complexity.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kanglin Liu (16 papers)
  2. Guoping Qiu (61 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.