Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Studying Invariances of Trained Convolutional Neural Networks (1803.05963v1)

Published 15 Mar 2018 in cs.CV

Abstract: Convolutional Neural Networks (CNNs) define an exceptionally powerful class of models for image classification, but the theoretical background and the understanding of how invariances to certain transformations are learned is limited. In a large scale screening with images modified by different affine and nonaffine transformations of varying magnitude, we analyzed the behavior of the CNN architectures AlexNet and ResNet. If the magnitude of different transformations does not exceed a class- and transformation dependent threshold, both architectures show invariant behavior. In this work we furthermore introduce a new learnable module, the Invariant Transformer Net, which enables us to learn differentiable parameters for a set of affine transformations. This allows us to extract the space of transformations to which the CNN is invariant and its class prediction robust.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.