Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learned Neural Iterative Decoding for Lossy Image Compression Systems (1803.05863v3)

Published 15 Mar 2018 in cs.CV

Abstract: For lossy image compression systems, we develop an algorithm, iterative refinement, to improve the decoder's reconstruction compared to standard decoding techniques. Specifically, we propose a recurrent neural network approach for nonlinear, iterative decoding. Our decoder, which works with any encoder, employs self-connected memory units that make use of causal and non-causal spatial context information to progressively reduce reconstruction error over a fixed number of steps. We experiment with variants of our estimator and find that iterative refinement consistently creates lower distortion images of higher perceptual quality compared to other approaches. Specifically, on the Kodak Lossless True Color Image Suite, we observe as much as a 0.871 decibel (dB) gain over JPEG, a 1.095 dB gain over JPEG 2000, and a 0.971 dB gain over a competitive neural model.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.