Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using accumulation to optimize deep residual neural nets (1803.05778v1)

Published 14 Jan 2018 in cs.CV

Abstract: Residual Neural Networks [1] won first place in all five main tracks of the ImageNet and COCO 2015 competitions. This kind of network involves the creation of pluggable modules such that the output contains a residual from the input. The residual in that paper is the identity function. We propose to include residuals from all lower layers, suitably normalized, to create the residual. This way, all previous layers contribute equally to the output of a layer. We show that our approach is an improvement on [1] for the CIFAR-10 dataset.

Summary

We haven't generated a summary for this paper yet.