Papers
Topics
Authors
Recent
2000 character limit reached

Bucket Renormalization for Approximate Inference (1803.05104v3)

Published 14 Mar 2018 in stat.ML

Abstract: Probabilistic graphical models are a key tool in machine learning applications. Computing the partition function, i.e., normalizing constant, is a fundamental task of statistical inference but it is generally computationally intractable, leading to extensive study of approximation methods. Iterative variational methods are a popular and successful family of approaches. However, even state of the art variational methods can return poor results or fail to converge on difficult instances. In this paper, we instead consider computing the partition function via sequential summation over variables. We develop robust approximate algorithms by combining ideas from mini-bucket elimination with tensor network and renormalization group methods from statistical physics. The resulting "convergence-free" methods show good empirical performance on both synthetic and real-world benchmark models, even for difficult instances.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com