Papers
Topics
Authors
Recent
Search
2000 character limit reached

Point Location in Dynamic Planar Subdivisions

Published 12 Mar 2018 in cs.CG | (1803.04325v1)

Abstract: We study the point location problem on dynamic planar subdivisions that allows insertions and deletions of edges. In our problem, the underlying graph of a subdivision is not necessarily connected. We present a data structure of linear size for such a dynamic planar subdivision that supports sublinear-time update and polylogarithmic-time query. Precisely, the amortized update time is $O(\sqrt{n}\log n(\log\log n){3/2})$ and the query time is $O(\log n(\log\log n)2)$, where $n$ is the number of edges in the subdivision. This answers a question posed by Snoeyink in the Handbook of Computational Geometry. When only deletions of edges are allowed, the update time and query time are just $O(\alpha(n))$ and $O(\log n)$, respectively.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.