Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quadratic and symmetric bilinear forms over finite fields and their association schemes (1803.04274v1)

Published 12 Mar 2018 in math.CO, cs.IT, and math.IT

Abstract: Let $\mathscr{Q}(m,q)$ and $\mathscr{S}(m,q)$ be the sets of quadratic forms and symmetric bilinear forms on an $m$-dimensional vector space over $\mathbb{F}_q$, respectively. The orbits of $\mathscr{Q}(m,q)$ and $\mathscr{S}(m,q)$ under a natural group action induce two translation association schemes, which are known to be dual to each other. We give explicit expressions for the eigenvalues of these association schemes in terms of linear combinations of generalised Krawtchouk polynomials, generalising earlier results for odd $q$ to the more difficult case when $q$ is even. We then study $d$-codes in these schemes, namely subsets $X$ of $\mathscr{Q}(m,q)$ or $\mathscr{S}(m,q)$ with the property that, for all distinct $A,B\in X$, the rank of $A-B$ is at least $d$. We prove tight bounds on the size of $d$-codes and show that, when these bounds hold with equality, the inner distributions of the subsets are often uniquely determined by their parameters. We also discuss connections to classical error-correcting codes and show how the Hamming distance distribution of large classes of codes over $\mathbb{F}_q$ can be determined from the results of this paper.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)