Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quadratic and symmetric bilinear forms over finite fields and their association schemes (1803.04274v1)

Published 12 Mar 2018 in math.CO, cs.IT, and math.IT

Abstract: Let $\mathscr{Q}(m,q)$ and $\mathscr{S}(m,q)$ be the sets of quadratic forms and symmetric bilinear forms on an $m$-dimensional vector space over $\mathbb{F}_q$, respectively. The orbits of $\mathscr{Q}(m,q)$ and $\mathscr{S}(m,q)$ under a natural group action induce two translation association schemes, which are known to be dual to each other. We give explicit expressions for the eigenvalues of these association schemes in terms of linear combinations of generalised Krawtchouk polynomials, generalising earlier results for odd $q$ to the more difficult case when $q$ is even. We then study $d$-codes in these schemes, namely subsets $X$ of $\mathscr{Q}(m,q)$ or $\mathscr{S}(m,q)$ with the property that, for all distinct $A,B\in X$, the rank of $A-B$ is at least $d$. We prove tight bounds on the size of $d$-codes and show that, when these bounds hold with equality, the inner distributions of the subsets are often uniquely determined by their parameters. We also discuss connections to classical error-correcting codes and show how the Hamming distance distribution of large classes of codes over $\mathbb{F}_q$ can be determined from the results of this paper.

Citations (16)

Summary

We haven't generated a summary for this paper yet.