Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning discrete Bayesian networks in polynomial time and sample complexity (1803.04087v3)

Published 12 Mar 2018 in cs.LG and stat.ML

Abstract: In this paper, we study the problem of structure learning for Bayesian networks in which nodes take discrete values. The problem is NP-hard in general but we show that under certain conditions we can recover the true structure of a Bayesian network with sufficient number of samples. We develop a mathematical model which does not assume any specific conditional probability distributions for the nodes. We use a primal-dual witness construction to prove that, under some technical conditions on the interaction between node pairs, we can do exact recovery of the parents and children of a node by performing group l_12-regularized multivariate regression. Thus, we recover the true Bayesian network structure. If degree of a node is bounded then the sample complexity of our proposed approach grows logarithmically with respect to the number of nodes in the Bayesian network. Furthermore, our method runs in polynomial time.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.