Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Experience Recommendation for Long Term Safe Learning-based Model Predictive Control in Changing Operating Conditions (1803.04065v1)

Published 11 Mar 2018 in cs.RO

Abstract: Learning has propelled the cutting edge of performance in robotic control to new heights, allowing robots to operate with high performance in conditions that were previously unimaginable. The majority of the work, however, assumes that the unknown parts are static or slowly changing. This limits them to static or slowly changing environments. However, in the real world, a robot may experience various unknown conditions. This paper presents a method to extend an existing single mode GP-based safe learning controller to learn an increasing number of non-linear models for the robot dynamics. We show that this approach enables a robot to re-use past experience from a large number of previously visited operating conditions, and to safely adapt when a new and distinct operating condition is encountered. This allows the robot to achieve safety and high performance in an large number of operating conditions that do not have to be specified ahead of time. Our approach runs independently from the controller, imposing no additional computation time on the control loop regardless of the number of previous operating conditions considered. We demonstrate the effectiveness of our approach in experiment on a 900\,kg ground robot with both physical and artificial changes to its dynamics. All of our experiments are conducted using vision for localization.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.