Exponential Condition Number of Solutions of the Discrete Lyapunov Equation (1803.04046v1)
Abstract: The condition number of the $n\ x\ n$ matrix $P$ is examined, where $P$ solves %the discete Lyapunov equation, $P - A P A* = BB*$, and $B$ is a $n\ x\ d$ matrix. Lower bounds on the condition number, $\kappa$, of $P$ are given when $A$ is normal, a single Jordan block or in Frobenius form. The bounds show that the ill-conditioning of $P$ grows as $\exp(n/d) >> 1$. These bounds are related to the condition number of the transformation that takes $A$ to input normal form. A simulation shows that $P$ is typically ill-conditioned in the case of $n>>1$ and $d=1$. When $A_{ij}$ has an independent Gaussian distribution (subject to restrictions), we observe that $\kappa(P){1/n} ~= 3.3$. The effect of auto-correlated forcing on the conditioning on state space systems is examined
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.