Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Exponential Condition Number of Solutions of the Discrete Lyapunov Equation (1803.04046v1)

Published 11 Mar 2018 in stat.ME, cs.NA, cs.SY, eess.SY, math.NA, math.ST, physics.data-an, and stat.TH

Abstract: The condition number of the $n\ x\ n$ matrix $P$ is examined, where $P$ solves %the discete Lyapunov equation, $P - A P A* = BB*$, and $B$ is a $n\ x\ d$ matrix. Lower bounds on the condition number, $\kappa$, of $P$ are given when $A$ is normal, a single Jordan block or in Frobenius form. The bounds show that the ill-conditioning of $P$ grows as $\exp(n/d) >> 1$. These bounds are related to the condition number of the transformation that takes $A$ to input normal form. A simulation shows that $P$ is typically ill-conditioned in the case of $n>>1$ and $d=1$. When $A_{ij}$ has an independent Gaussian distribution (subject to restrictions), we observe that $\kappa(P){1/n} ~= 3.3$. The effect of auto-correlated forcing on the conditioning on state space systems is examined

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.