Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Reproducibility and Pseudo-Determinism in Log-Space (1803.04025v1)

Published 11 Mar 2018 in cs.CC

Abstract: A curious property of randomized log-space search algorithms is that their outputs are often longer than their workspace. This leads to the question: how can we reproduce the results of a randomized log space computation without storing the output or randomness verbatim? Running the algorithm again with new random bits may result in a new (and potentially different) output. We show that every problem in search-RL has a randomized log-space algorithm where the output can be reproduced. Specifically, we show that for every problem in search-RL, there are a pair of log-space randomized algorithms A and B where for every input x, A will output some string t_x of size O(log n), such that B when running on (x, t_x) will be pseudo-deterministic: that is, running B multiple times on the same input (x, t_x) will result in the same output on all executions with high probability. Thus, by storing only O(log n) bits in memory, it is possible to reproduce the output of a randomized log-space algorithm. An algorithm is reproducible without storing any bits in memory (i.e., |t_x|=0) if and only if it is pseudo-deterministic. We show pseudo-deterministic algorithms for finding paths in undirected graphs and Eulerian graphs using logarithmic space. Our algorithms are substantially faster than the best known deterministic algorithms for finding paths in such graphs in log-space. The algorithm for search-RL has the additional property that its output, when viewed as a random variable depending on the randomness used by the algorithm, has entropy O(log n).

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.