Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Maximum Weight Spectrum Codes (1803.04020v3)

Published 11 Mar 2018 in cs.IT, math.CO, and math.IT

Abstract: In the recent work \cite{shi18}, a combinatorial problem concerning linear codes over a finite field $\F_q$ was introduced. In that work the authors studied the weight set of an $[n,k]_q$ linear code, that is the set of non-zero distinct Hamming weights, showing that its cardinality is upper bounded by $\frac{qk-1}{q-1}$. They showed that this bound was sharp in the case $ q=2 $, and in the case $ k=2 $. They conjectured that the bound is sharp for every prime power $ q $ and every positive integer $ k $. In this work quickly establish the truth of this conjecture. We provide two proofs, each employing different construction techniques. The first relies on the geometric view of linear codes as systems of projective points. The second approach is purely algebraic. We establish some lower bounds on the length of codes that satisfy the conjecture, and the length of the new codes constructed here are discussed.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.