Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multi-objective Contextual Bandit Problem with Similarity Information (1803.04015v1)

Published 11 Mar 2018 in stat.ML and cs.LG

Abstract: In this paper we propose the multi-objective contextual bandit problem with similarity information. This problem extends the classical contextual bandit problem with similarity information by introducing multiple and possibly conflicting objectives. Since the best arm in each objective can be different given the context, learning the best arm based on a single objective can jeopardize the rewards obtained from the other objectives. In order to evaluate the performance of the learner in this setup, we use a performance metric called the contextual Pareto regret. Essentially, the contextual Pareto regret is the sum of the distances of the arms chosen by the learner to the context dependent Pareto front. For this problem, we develop a new online learning algorithm called Pareto Contextual Zooming (PCZ), which exploits the idea of contextual zooming to learn the arms that are close to the Pareto front for each observed context by adaptively partitioning the joint context-arm set according to the observed rewards and locations of the context-arm pairs selected in the past. Then, we prove that PCZ achieves $\tilde O (T{(1+d_p)/(2+d_p)})$ Pareto regret where $d_p$ is the Pareto zooming dimension that depends on the size of the set of near-optimal context-arm pairs. Moreover, we show that this regret bound is nearly optimal by providing an almost matching $\Omega (T{(1+d_p)/(2+d_p)})$ lower bound.

Citations (31)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.