Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Knowledge Aided Consistency for Weakly Supervised Phrase Grounding (1803.03879v1)

Published 11 Mar 2018 in cs.CV

Abstract: Given a natural language query, a phrase grounding system aims to localize mentioned objects in an image. In weakly supervised scenario, mapping between image regions (i.e., proposals) and language is not available in the training set. Previous methods address this deficiency by training a grounding system via learning to reconstruct language information contained in input queries from predicted proposals. However, the optimization is solely guided by the reconstruction loss from the language modality, and ignores rich visual information contained in proposals and useful cues from external knowledge. In this paper, we explore the consistency contained in both visual and language modalities, and leverage complementary external knowledge to facilitate weakly supervised grounding. We propose a novel Knowledge Aided Consistency Network (KAC Net) which is optimized by reconstructing input query and proposal's information. To leverage complementary knowledge contained in the visual features, we introduce a Knowledge Based Pooling (KBP) gate to focus on query-related proposals. Experiments show that KAC Net provides a significant improvement on two popular datasets.

Citations (85)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube