Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On dynamic ensemble selection and data preprocessing for multi-class imbalance learning (1803.03877v2)

Published 11 Mar 2018 in stat.ML and cs.LG

Abstract: Class-imbalance refers to classification problems in which many more instances are available for certain classes than for others. Such imbalanced datasets require special attention because traditional classifiers generally favor the majority class which has a large number of instances. Ensemble of classifiers have been reported to yield promising results. However, the majority of ensemble methods applied too imbalanced learning are static ones. Moreover, they only deal with binary imbalanced problems. Hence, this paper presents an empirical analysis of dynamic selection techniques and data preprocessing methods for dealing with multi-class imbalanced problems. We considered five variations of preprocessing methods and four dynamic selection methods. Our experiments conducted on 26 multi-class imbalanced problems show that the dynamic ensemble improves the F-measure and the G-mean as compared to the static ensemble. Moreover, data preprocessing plays an important role in such cases.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.