Papers
Topics
Authors
Recent
2000 character limit reached

Co-occurrence of the Benford-like and Zipf Laws Arising from the Texts Representing Human and Artificial Languages (1803.03667v1)

Published 6 Mar 2018 in cs.CL, physics.soc-ph, and stat.OT

Abstract: We demonstrate that large texts, representing human (English, Russian, Ukrainian) and artificial (C++, Java) languages, display quantitative patterns characterized by the Benford-like and Zipf laws. The frequency of a word following the Zipf law is inversely proportional to its rank, whereas the total numbers of a certain word appearing in the text generate the uneven Benford-like distribution of leading numbers. Excluding the most popular words essentially improves the correlation of actual textual data with the Zipfian distribution, whereas the Benford distribution of leading numbers (arising from the overall amount of a certain word) is insensitive to the same elimination procedure. The calculated values of the moduli of slopes of double logarithmical plots for artificial languages (C++, Java) are markedly larger than those for human ones.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.