Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Explaining Black-box Android Malware Detection (1803.03544v2)

Published 9 Mar 2018 in cs.LG, cs.CR, and stat.ML

Abstract: Machine-learning models have been recently used for detecting malicious Android applications, reporting impressive performances on benchmark datasets, even when trained only on features statically extracted from the application, such as system calls and permissions. However, recent findings have highlighted the fragility of such in-vitro evaluations with benchmark datasets, showing that very few changes to the content of Android malware may suffice to evade detection. How can we thus trust that a malware detector performing well on benchmark data will continue to do so when deployed in an operating environment? To mitigate this issue, the most popular Android malware detectors use linear, explainable machine-learning models to easily identify the most influential features contributing to each decision. In this work, we generalize this approach to any black-box machine- learning model, by leveraging a gradient-based approach to identify the most influential local features. This enables using nonlinear models to potentially increase accuracy without sacrificing interpretability of decisions. Our approach also highlights the global characteristics learned by the model to discriminate between benign and malware applications. Finally, as shown by our empirical analysis on a popular Android malware detection task, it also helps identifying potential vulnerabilities of linear and nonlinear models against adversarial manipulations.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.