Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Exploration of Graph Computing in Power System State Estimation (1803.03300v1)

Published 8 Mar 2018 in cs.SY, cs.DM, cs.DS, cs.NA, and math.NA

Abstract: With the increased complexity of power systems due to the integration of smart grid technologies and renewable energy resources, more frequent changes have been introduced to system status, and the traditional serial mode of state estimation algorithm cannot well meet the restrict time-constrained requirement for the future dynamic power grid, even with advanced computer hardware. To guarantee the grid reliability and minimize the impacts caused by system status fluctuations, a fast, even SCADA-rate, state estimator is urgently needed. In this paper, a graph based power system modeling is firstly explored and a graph computing based state estimation is proposed to speed up its performance. The power system is represented by a graph, which is a collection of vertices and edges, and the measurements are attributes of vertices and edges. Each vertex can independently implement local computation, like formulations of the node-based H matrix, gain matrix and righthand-side (RHS) vector, only with the information on its connected edges and neighboring vertices. Then, by taking advantages of graph database, these node-based data are conveniently collected and stored in the compressed sparse row (CSR) format avoiding the complexity and heaviness introduced by the sparse matrices. With communications and synchronization, centralized computation of solving the weighted least square (WLS) state estimation is completed with hierarchical parallel computing. The proposed strategy is implemented on a graph database platform. The testing results of IEEE 14-bus, IEEE 118-bus systems and a provincial system in China verify the accuracy and high-performance of the proposed methodology.

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.