Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Generating Contradictory, Neutral, and Entailing Sentences (1803.02710v1)

Published 7 Mar 2018 in cs.CL and cs.AI

Abstract: Learning distributed sentence representations remains an interesting problem in the field of NLP. We want to learn a model that approximates the conditional latent space over the representations of a logical antecedent of the given statement. In our paper, we propose an approach to generating sentences, conditioned on an input sentence and a logical inference label. We do this by modeling the different possibilities for the output sentence as a distribution over the latent representation, which we train using an adversarial objective. We evaluate the model using two state-of-the-art models for the Recognizing Textual Entailment (RTE) task, and measure the BLEU scores against the actual sentences as a probe for the diversity of sentences produced by our model. The experiment results show that, given our framework, we have clear ways to improve the quality and diversity of generated sentences.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.